Math Field Day 2012 Short Course Event Symbols, Formulas, Conversion Factors, Constants, and Definitions

(foot-pound-second system of units - USCS)

	Symbols		
а	acceleration in ft/sec ²		
Α	area in ft ²		
cfs	cubic feet per second, ft ³ /sec		
d	depth or diameter		
f	Darcy-Weisbach friction factor		
g	gravitational acceleration in $ft/sec^2 = 32.2$ ft/sec^2		
gpm	gallons per minute		
mgd	million gallons per day		
h	head in ft, height in ft, pressure head in ft		
h_L	Lost head in ft		
in	inch		
lb	pound		
n	roughness factor in Manning's formulas		
р	pressure in lb/ft ² , wetted perimeter in ft		
psf	lb/ft ² , gage		
psi	lb/in ² , gage		
Q	volume rate of flow in cfs		
q	volume flow rate per unit width of channel		
R	hydraulic radius		
w	unit weight in lb/ft ³ (62.4 lb/ft ³ for water)		
S	Slope		
t	Time		
v or V	velocity		

Conversion Factors
7.48 gal = 1 ft ³
12 in = 1 ft
60 s = 1 min
144 in ² = 1 ft ²

Unit Conversions	
$gpm \rightarrow ft^3 / \sec \Rightarrow \frac{gal}{\min} \times \frac{1\min}{60\sec} \times \frac{1ft^3}{7.48gal}$	
$psi \rightarrow psf \Rightarrow \frac{lb}{in^2} \times \frac{144in^2}{1ft^2}$	

Constants	
$g = 32.2 \frac{ft}{\text{sec}^2}$	
$w = 62.4 \frac{lb}{ft^3}$	(water)

Equations of Fluid Flow		
1. Equation of Continuity	$Q = A_1 V_1 = A_2 V_2 = \text{constant}$	
Energy Equation (Bernoulli Theorem)	$\frac{p_1}{w} + \frac{{v_1}^2}{2g} + z_1 - h_L = \frac{p_2}{w} + \frac{{v_2}^2}{2g} + z_2$	
2a. Pressure head	$h_p = \frac{p}{w}$	
2b. Velocity head	$h_{v} = \frac{v^2}{2g}$	
2c. Static head	$h_s = z$ = elevation above a reference	
Manning formula for open channel flow (use only in the foot-pound-second system)	$Q = AV = A(\frac{1.486}{n})R^{2/3}S^{1/2}$	
3a. Hydraulic Radius formula (use to get <i>R</i> in the Manning formula)	$R = \frac{cross\ sectional\ area\ of\ flow}{wetted\ perimeter}$	
Darcy-Weisbach formula, head loss for flow in pipes under pressure	$h_L = f\left(\frac{L}{d}\right)\left(\frac{V^2}{2g}\right)$	

channel)		
5a. Depths Relationship:		
$q^{2}/g = y_{1}y_{2}\left(\frac{y_{1} + y_{2}}{2}\right)$		
5b. Specific Energy (E):		
E = depth + velocity head		
$E = v + V^2 /$		

Hydraulic Jump (constant flow in rectangular

5c. Loss of head = $E_1 - E_2$